Di-Boson Production at Hadron Colliders

Beate Heinemann, University of Liverpool

- The Standard Model and Beyond
- Tevatron and the LHC
- ΥΥ
- Wy and Zy
- WW, WZ, ZZ
- Wh
- Summary and Outlook

Northwestern University - Seminar Oct. 4th 2004

Di-Boson Production: What's that?

Associated production of ≥ 2 gauge bosons of electroweak interaction

$$pp \rightarrow \gamma \gamma, W \gamma, Z \gamma,$$
 WW, WZ, ZZ
 $+ X$

Something happens

The Standard Model of Particle Physics

-3 generations of quarks and leptons interact via exchange of gauge bosons:

```
-Electroweak SU(2)xU(1): W, Z, \gamma -Strong SU(3): g
```

-Symmetry breaking caused by Higgs field

⇒Generates Goldstone bosons

⇒Longitudinal degrees of freedom for W and Z

⇒ 3 massive and one massless gauge bosons

Gauge Bosons

Particle	Mass (GeV/c²)	Force
Photon (γ)	0	Electroweak
W±	80.450	Electroweak
Z ⁰	91.187	Electroweak
Gluons (g)	0	Strong

Higgs Boson

-Vacuum quantum numbers (0⁺⁺)

-Couples to mass

The Higgs boson: what do we know?

- Precision measurements of
 - $M_W = 80.412 \pm 0.042 \, GeV/c^2$
 - o M_{top} =178.0 +- 4.3 GeV/c²
- Prediction of higgs boson mass within SM due to loop corrections
 - o Most likely value: 114 GeV
- Direct limit (LEP): m_h>114.4 GeV

Heinemann - North

m_w depends on m_t and m_h

The Higgs boson: what do we know?

- Precision measurements of
 - $M_W = 80.412 \pm 0.042 \, GeV/c^2$
 - $_{\text{top}}$ =178.0 +- 4.3 GeV/c²
- Prediction of higgs boson mass within SM due to loop corrections
 - o Most likely value: 114 GeV
- Direct limit (LEP): m_h>114.4 GeV

Better prediction with expected improvements on W and top mass precision

Heinemann - Northw

Higgs Production: Tevatron and LHC

Higgs boson decay

- Depends on Mass
- M<130 GeV:</p>
 - o bb dominant
 - o ττ subdominant
 - o yy used at LHC
- M>130 GeV
 - WW dominant
 - o ZZ cleanest

=> di-boson decays most promising!

What if there is no Higgs?

- - W_LW_L cross section would violate unitarity since amplitude perturbative expansion in energy (s): $\sigma \sim s^2/v^2 + s^4/v^4$...
- -Need either a Higgs boson with m_h<1 TeV or some new physics (e.g. SUSY, Technicolor)
- -Tevatron and LHC probe relevant scale of 100 GeV 1 TeV!

=> We will find something (higgs or more extraodinary) in the next 10 years!

Beyond the Standard Model

- Why not the Standard Model?
 - Hierarchy problem: $m_h \ll m_{Pl} \Rightarrow$ new physics at TeV scale
 - Most Dark Matter in our universe unaccounted for
 - No unification of forces ...+ many more
- What is beyond the Standard Model?
 - o Supersymmetry (SUSY):
 - rather complex (>100 parameters)
 - o Extra Dimensions
 - o Techni- and Topcolor
 - Little Higgs
 - Extended Gauge Groups or Compositeness:
 - · Z', excited fermions, leptoquarks, ...

New particles heavy ⇒
At high energy colliders

- Direct production
- Indirect contributions

Tevatron Run II

- Upgrade completed in 2001
- Accelerator:

	√s(TeV)	∆t(ns)	L(cm ⁻² s ⁻¹)
Run I	1.8	3500	2.5x10 ³¹
Run II	1.96	396	1.0×10 ³²

- Experiments CDF and DO:
 - New tracking systems
 - New RO electronics+trigger
 - Many other substantial new components and upgrades
 - Data taking efficiency>85%
- Will mostly focus on CDF but show also some DO results

Tevatron Performance

Tevatron Performance

0.00

The state of the s

Week #

100.00

105 115 125 135 145 155 165 175

Collider Run II Integrated Luminosity

Tevatron: Expected Performance

Beyond the Tevatron: LHC

- pp-collider at CERN
- Center-of-mass energy:14 TeV
- Starts operation in 2008
- 3 years "low" luminosity:
 10 fb⁻¹ /yr
- High luminosity: 100 fb⁻¹ /yr

Di-Boson Production: Why?

- -SM precision tests
- -SUSY
- -Large Extra Dimensions
- -Higgs
- -Run I anomalies

Diboson cross sections from CDF (prelimina 25

Data

ZZ

qd ui uo 15 10 5 Theory

Di-Photon Production

- SM couplings small
- Ideal for New Physics Searches:
 - o Large Extra Dimensions:
 - Graviton exchange?
 - Present sensitivity about 900 GeV
 - Run II: sensitivity about 2 TeV
 - Higgs ->γγ:
 - BR small in SM 9but discovery channel at LHC)
 - Enhancements predicted in some BSM theories ("bosophilic Higgs")
 - Extraodinary events with 2 photons and transverse momentum imbalance(?)

Example LHC signal (CMS: 3 yrs)

10-04-2004

Beate Heinemar

ıυ

Di-Photon Cross Section

- Select 2 photons with $E_t>13$ (14) GeV
- Statistical subtraction of BG (mostly $\pi^0 \rightarrow \gamma\gamma$)

- Data agree well with NLO
- PYTHIA describes shape (normalisatio off by factor 2)

Randall-Sundrum Graviton

Analysis:

- DO: combined ee and γγ
- CDF: separate ee, μμ and
 γγ
- Data consistent with background
- Relevant parameters:
 - o Coupling: k/MPI
 - o Mass of 1st KK-mode
- World's best limit:
 - o M>785 GeV for $k/M_{Pl}=0.1$

DO: Non-SM Light H→γγ

- Some extensions of SM contain Higgs w/ large B(H→γγ)
 - Fermiophobic Higgs: does not couple to fermions
 - Topcolor Higgs: couples to only to top (i.e. no other fermions)
- Important discovery channel at LHC

- Event selection
 - o 2 Isolated γ 's with
 - pT > 25 GeV
 - $|\eta|$ <1.05 (*CC*) or 1.5< $|\eta|$ <2.4 (*EC*)
 - o $p_T(\gamma\gamma) > 35 \text{ GeV (optimised)}$
- BG: mostly jets faking photons
 - o Syst. error about 30% per photon!
 - Estimated from Data

DØ Run II Preliminary

Central-Central

M_m GeV

Non-SM Light Higgs H→γγ

Perform counting experiments on optimized sliding mass window to set limit on $B(H\rightarrow\gamma\gamma)$ as function of M(H)

yy+X: more exclusive channels

Run I:

- found 1 event with 2 photons, 2 electrons and large missing Et
- SM expectation 10⁻⁶ (!!!)
- Inspired SUSY model where SUSY is broken at low energies: "Gauge Mediated Symmetry Breaking"

Run II:

Any new such event would be exciting!

GMSB: YY+F

- Assume χ^{0}_{1} is NLSP:
 - Decay to G+γ
 - \widetilde{G} light M~O(1 keV)
 - o Inspired by CDF $ee_{\gamma\gamma}+E_{\tau}$ event
- DO (CDF) Inclusive search:
 - 2 photons: E_t > 20 (13) GeV
 - o E₊ > 40 (45) GeV

	Exp.	Obs.	Μ (χ ⁺ ₁)
D0	2.5±0.5	1	>192 GeV
CDF	0.3±0.1	0	>168 GeV

SM Theory of W/Z+y Production

Tree-level diagram of

These diagrams interfere and decay products are detected in the 10-04-2 detector

Anomalous Couplings

Anomalous couplings: $\Delta \kappa$, λ $\mu_W = e (1 + \kappa_y + \lambda_y) / 2m_W$ $q_W = -e (\kappa_y - \lambda_y) / m_W^2$ Existence of WWy vertex indirectly seen at LEP

LEP results hard to beat but complementary:

- √higher energy
- √WWγ vs WWZ

W_{γ} , Z_{γ} : beyond the Standard Model

- Any anomalous couplings:
 - Increase in cross-section
 - Excess of events in high E_{t}^{γ} region
- Physics beyond SM (e.g. excited W/Z,excited e):
 - Increase in cross-section
 - Excess of events in high E_{t}^{γ} region
 - Excess of events in high 3 body
 Mass region

W+y Results

	Electron	Muon
W+ γ MC	126.8 ± 5.8	95.2 ± 4.9
W+jet BG	59.5 ± 18.1	27.6 ± 7.5
W+γ(tau)	1.5 ± 0.2	2.3 ± 0.2
Ζ+ γ	6.3 ± 0.3	17.4 ± 1.0
Total SM	194.1 ± 19.1	142.4 ± 9.5
data	195	128
σ*BR	19.4 ± 2.1 ± 2.9	16.3 ± 2.3 ± 1.8

Combined: $\sigma^*BR=18.1 \pm 1.6(stat) \pm 2.4(sys) \pm 1.2(lumi)$ pb

SM: 19.3±1.4 pb

Zy Results

	Electron (±sys)	Muon (± sys)
Z+y MC	30.9 ± 1.6	33.2 ± 1.5
Z+jet BG	2.8 ± 0.9	2.1 ± 0.7
Total SM	33.7 ± 1.8	35.3 ± 1.6
data	35	35
σ*BR	$4.7 \pm 0.8 \pm 0.3$	4.5 ± 0.8 ± 0.2

Combined: $\sigma^*BR=4.6 \pm 0.5(stat) \pm 0.2(sys) \pm 0.3(lumi)$ pb

SM: 4.5±0.3 pb

Ratio of Cross Sections

- Inclusive W and Z production:
 - Recent CDF result (hep-ex/0406078)
 - o $\sigma(Z)xBR(Z\rightarrow II) / \sigma(W)xBR(W\rightarrow Iv)$

=10.15±0.21%

- Wg and Zg Production for E₊>7 GeV:
 - o $\sigma(Z\gamma)\times BR(Z->II) / \sigma(W\gamma)\times BR(W->Iv) = 4.6/18.1 \approx 25+-5 \%$
- => Expected due to
- \bullet interference of t-, u-, and s-channel diagrams in W_{γ}
- No s-channel diagram in Z_{γ} => no interference
- FSR diagram (1 vs 2 leptons)

=>Indirect Evidence for WWγ vertex!

Photon E₊

- Data agree well with SM
- Will be used to extract WWy and ZZy couplings

Mass

- Data agree well with prediction: no sign of any signal of high mass
- Can be used to constrain e.g. W* and Z*

WW: Why?

- Never observed at hadron colliders with any significance (run 1: 5 observed / 1.2+-0.3 BG)
- SM test
- Higgs -> WW

WW Cross Section

WW: Decay Channels

WW: Cross Section Results

	DILEPTON	LEPTON+TRACK
WW Signal	11.3 ± 1.3	16.3 ± 0.4
Drell-Yan Background	1.8 ± 0.4	1.8 ± 0.3
Fake Background	1.1 ± 0.5	9.1 ± 0.8
Other Background	1.9 ± 0.2	4.2 ± 0.1
Total Background	4.8 ± 0.7	15.1 ± 0.9
Total Expected	16.1 ± 1.6	31.5 ± 1.0
Data Observed	17	39
σ(WW) [pb]	$14.3^{+5.6}_{-4.9}$ (stat) ± 1.6 (syst) ± 0.9 (lum)	19.4±5.1 (stat)±3.5 (syst)±1.2 (lum)

- 2 independent analysis (high purity vs high acceptance)
 ->Consistent results
- First significant signal: significance>3σ
- Agree with theor. prediction: σ_{NLO} = 12.5+-0.8 pb

WW Candidate Event

- eμ channel has little Standard Model background
- Signal/Background ≈ 4

Run 155364 Event 3494901 : $WW \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu$ Candidate

$$p_T(e) = 42.0 \text{ GeV/c}; \quad p_T(\mu) = 20.0 \text{ GeV/c}; \quad M_{e\mu} = 81.5 \text{ GeV}$$

$$E_T = 64.8 \text{ GeV}; \quad \Phi(E_T) = 1.6$$

$$\Delta\Phi(\cancel{E}_T, \text{lepton}) = 1.3; \quad \Delta\Phi(e, \mu) = 2.4; \quad \text{Opening-Angle}(e, \mu) = 2.6$$

WW kinematic distributions

- Kinematic properties as expected from SM WW production
- => use the data to constrain new physics

$H \rightarrow WW^{(*)} \rightarrow |+|-\gamma\gamma$

 Higgs mass reconstruction not possible due to two neutrions:

- Dilepton mass lower for h->WW: mass dependent cut
- Employ spin correlations to suppress WW background:
 - > leptons from $h \rightarrow WW^{(*)} \rightarrow l^+l^-vv$ tend to be collinear

$\mathbf{M}_{_{\mathbf{H}}}$	Cut
140 GeV	$M_{_{\it H}} \leq 55.0~{ m GeV}$
150 GeV	$M_{_{\it H}} \leq 57.5~{ m GeV}$
160 GeV	$M_{_{\it H}} \leq 62.5~{ m GeV}$
170 GeV	$M_{_{\it H}} \leq 70.0~{ m GeV}$
180 GeV	$M_{_{H}} \le 80.0 \text{ GeV}$

1 W-

Heinemann - Northwestern Univers...

$H \rightarrow WW^{(*)} \rightarrow |+|-\gamma\gamma$

Similar analysis by DO

DO	ee	eμ	μμ
Observed	2	2	5
Expected	2.7 ±0.4	3.1 ±0.3	5.3 ±0.6

 Neither CDF nor DO see any evidence for h production => set upper limit on cross section

$$\sigma(gg{\rightarrow}H;\,4G) \sim 9 \times \sigma(gg{\rightarrow}H;\,3G)$$

 Expect 0.11 events for 160 GeV SM Higgs with 200/pb

Excluded cross section times Branching Ratio at 95% C.L.

WZ and ZZ

Select 2 leptons with M(ll) in Z mass range and

- •2 leptons (ZZ->llll)
- •1 lepton and $E_t(WZ->lllv)$
- •Significant $\mathbb{Z}_t(ZZ->ll\nu\nu)$

CDF Run II Winter 2004 Preliminary, $\mathcal{L}=194 \text{ pb}^{-1}$

Process	$l_1 l_2 l_3 l_4$	$l_1 l_2 l_3 E_T$	$l_1 l_2 E_T$	Combined
ZZ	0.07 ± 0.01	0.13 ± 0.01	0.87 ± 0.14	1.07 ± 0.15
ZW	-	0.81 ± 0.07	0.86 ± 0.14	1.67 ± 0.19
ZZ+ZW	0.07 ± 0.01	0.94 ± 0.08	1.73 ± 0.27	2.72 ± 0.33
WW	-	-	1.26 ± 0.20	1.26 ± 0.20
Fake	0.01 ± 0.02	0.07 ± 0.06	0.56 ± 0.30	0.64 ± 0.34
Drell-Yan	-	-	0.31 ± 0.13	0.31 ± 0.13
$tar{t}$	-	-	0.08 ± 0.02	0.08 ± 0.02
Total Background	0.01 ± 0.02	0.07 ± 0.06	2.21 ± 0.38	2.29 ± 0.42
Expected S. $+$ B.	0.08 ± 0.02	1.01 ± 0.10	3.94 ± 0.57	5.01 ± 0.64
Data	0	0	4	4

Expect 5.0+-0.6 events

Observe 4 events ⇒

σ<13.9 pb @ 95% C.L.

NLO: σ =5.2±0.4pb

WZ/ZZ: kinematics

- Consistent with expectation
- More data needed!

WZ/ZZ and Wh Production

Large backgrounds from QCD processes:
 W+jets, Z+jets

Use h->bb channel for Higgs search

 WZ->Wbb will be observable before seeing the higgs=> excellent calibration channel

 Exercises mass resolution: combining calorimeter and tracking => 30% improvement in energy resolution

Wh Production: Run 2 data

- Selection:
 - W($\rightarrow \mu \nu$ or $e\nu$)
 - o 2 jets: 1 b-tagged
- Search for peak in dijet invariant mass distribution
- No evidence yet for WZ or Wh

Summary of CDF Higgs Searches

Higgs Discovery at Tevatron?

Higgs Discovery at the LHC?

45

Summary and Outlook

- Diboson Production excellent probe for New Physics
 - Higgs production
 - SUSY
 - Large Extra Dimensions
 - Precision test of SU(2)xU(1) gauge structure
- Many new results from Tevatron
 - Machine and experiments running great!
 - Have got 2x more data on tape!
 - Anticipate 1.5-2 fb⁻¹ by 2007 and
 4.4-8.6 fb⁻¹ by 2009
- Crucial for Higgs discovery at both Tevatron and LHC

Backup Slides

CDF: COT Aging Problem Solved!

- Gaseous tracking chamber COT: wire aging problem seen in 2003-2004
- · hydrocarbon residue detected on sense wires where gain had been falling
- · addition of air (probably the oxygen) reverses the aging
- Chamber gains back go pre-aged status
- Voltages reduced on inner superlayers from February to May 2004

Silicon Performance

See talk by R. Wallny

CDF: B-tagging and tracking

Requirement	Efficiency	Requirement	Efficiency
$N_{r_{\varphi}} \geq 3$	94%	$N_z \ge 3$	80%
$N_{r_{\varphi}} \geq 4$	90%	$N_z \ge 4$	61%
$N_{r_{\phi}} = 5$	46%	$N_z = 5$	26%

Radiation Zero

 "Radiation Zero" unique to TeVatron:

o suppressed w.g. for W- $\cos_* = -(1+2Q_i) = -1/3$

 Observable in angular separation of lepton and photon

W + Photon as Search

Run I: Ét>25 GeV, lepton Et>25 GeV, photon Et>25 GeV

lepton	Data	SM exp
muon	11	4.2
electron	5	3.4
both	16	7.6

Run II:

Phys. Rev. Lett. 89, 041802 (2002)

- Repeat run I analysis (20 x more data)
- Extend to forward region (silicon tracker, new Plug calorimeter, new forward muon system)

WZ Production: leptonic channel

- -Leptonic channel (Z->II, W->Iv) background rather low (5/B=3) but cross section also low ($\sigma=2.5$ pb)
- -Anomalous couplings: WWZ may be different to WWy
- -Experimental signature similar to SUSY "trilepton" channel:

Associated production of chargino and neutralino: disentangle on basis of imbalance in transverse momentum, masses

10-04-2004

Beate Heinemann - Northwestern Univ

Di-Boson Production

- Di-Photon Production:

discovery channel at LHC for mh<130 GeV

-WW and ZZ Production:

-discovery channels at LHC for 500>mh>130 GeV

Beate Heinemann - Northwestern University

Why WW scattering?

Without the Higgs, $W_L W_L \rightarrow W_L W_L$ violates perturbative unitarity at 1.2 TeV $(W_{\top} W_{\top} \rightarrow W_{\top} W_{\top} \text{ doesn't})$

In the high energy limit, the W_L ARE the 3 goldstone bosons associated with electroweak symmetry breaking

Using all we know about electroweak symmetry breaking, (v = 246 GeV, 3 goldstone bosons, $M_W \sim M_Z$ (residual global SU(2) symmetry)), can write quite generally, to 1 loop (from the EWChL):

$$\mathcal{A}(s,t,u) = \frac{s}{v^2} + \frac{4}{v^4} \left[2a_5(\mu)s^2 + a_4(\mu)(t^2 + u^2) + \frac{1}{(4\pi)^2} \frac{10s^2 + 13(t^2 + u^2)}{72} \right] - \frac{1}{96\pi^2 v^4} \left[t(s+2t)\log(\frac{-t}{\mu^2}) + u(s+2u)\log(\frac{-u}{\mu^2}) + 3s^2\log(\frac{-s}{\mu^2}) \right]$$

a₄ and a₅ parameterise our ignorance of the new physics (they come from the only dimension-4 terms we could add to the EWChL)

$$\mathcal{L}^{(4)} = a_4 (\langle D_{\mu} U D^{\nu} U^{\dagger} \rangle)^2 + a_5 (\langle D_{\mu} U D^{\mu} U^{\dagger} \rangle)^2$$

Experimental Aspects: Photons

- Backgrounds:
 - jet fragmenting into single hard pi0
 - Use high granularity strip and wire chambers in central calorimeter to separate piO from photon
 - New strip and wire chambers in forward calorimeter
 - Electrons where track is not found
 - Difficult in forward region where only Silicon (no drift chamber)
 - Developing robust and efficient algorithms
- Develop generic methods to estimate backgrounds:
 - Jet fake rate about 0.1-0.01% for developed cuts

